Unit 1 - Mark scheme

Question number	Answer	Mark
	A D 111	4
1(a)	A R and U	1
0	A	AA
Question	Answer	Mark
number		
1(b)	C Y	1
Question	Answer	Mark
number		
1(c)	C U ²⁺ and T ²⁻	1
Question	Answer	Mark
number		
2	A P ³⁻	1
Question	Answer	Mark
number		
3		1
	$ egin{array}{c c c c c c c c c c c c c c c c c c c $	
	D Literation Literation	
Question	Answer	Mark
number		
4	C 20.18	1
Question	Answer	Mark
number		
5	B ⁵⁶ Fe ²⁺	1

		1
Question number	Answer	Mark
6	B fractional distillation	1
Question number	Answer	Mark
7	A ethanol	1
Question number	Answer	Mark
8	A E-5-methylhex-2-ene	1
Question number	Answer	Mark
9	A π , heterolytic	1
Question number	Answer	Mark
10	C 30.0	1
		<u>.</u>
Question number	Answer	Mark
11	C 0.20	1
<u>, </u>		•
Question number	Answer	Mark
12	B C ₅ H ₁₂	1
L		

Question number	Answer	Mark
13	D 1.2 dm ³ of nitrogen, N ₂ , and 1.2 g of magnesium, Mg	1

Question number	Answer	Mark
14	B 2 electrons in a 2p orbital, 18 electrons in the third quantum shell	1

Question number	Answer	Mark
15	B covalent and dative covalent bonding only	1

Question number	Answer	Mark
16	D AlCl ₃ trigonal planar, PH ₃ pyramidal	1

Question number	Answer	Mark
17	D C-Cl bond polar, CCl ₄ molecule non-polar	1

Question number	Answer	Mark
18	$B (C_4H_7Cl)$	1

Question number	Answer	Additional guidance	Mark
19(a)	• correct species in equation (1)	Examples of equation: $N(g) \rightarrow N^{+}(g) + e^{(-)}$	2
	• correct state symbols (1)	$ \begin{array}{c} \text{or} \\ \text{N(g) - } e^{(-)} \rightarrow \text{N}^{+}(g) \end{array} $	

Question number	Answer	Additional guidance	Mark
19(b)	An explanation that makes reference to the following points:		4
	• general increase across a period/atomic numbers 3-10 due to increase in nuclear charge (1)	Allow increase in effective nuclear charge	
	• the (outer) electrons are added to the same quantum shell or the shielding is the same. (1)		
	Irregularities:		
	atom with atomic number 5 has lower IE than atom with atomic number 4 as the (2)p electron is better shielded than the (2)s electron (so requires less energy to be removed) (1)	Accept reverse arguments Accept names for atomic numbers	
	• atom with atomic number 8 has lower IE than atom with atomic number 7 as there is repulsion between the pair of electrons in the 2(p) orbital (so less energy is required to remove one of them).	Allow the 2p sub-shell is further from the nucleus than the 2s orbital Allow a half-filled p sub shell is more stable	

Question number	Answer	Additional guidance	Mark
19(c)	 An explanation that makes reference to the following points: (decrease down a group due to) (there is an increase in nuclear charge from 3 to 11 but this is offset by) the outer electron is in a higher quantum shell/higher energy level 		2
	• therefore further from the nucleus/better shielded. (1)		

Question number	Answer	Additional guidance	Mark
20(a)	• [Ar]3d ¹⁰ 4s ² 4p ⁵	Allow 4s ² 3d ¹⁰ 4p ⁵ Ignore 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ for (Ar) written out but do not allow incorrect electronic configuration for Ar	1

Question number	Answer					Additional guidance	Mark
20(b)(i)						1 mark for each row correct	2
	Species	Protons	Neutrons	Electrons			
	⁷⁹ Br	35	44	35	(1)		
	⁸¹ Br ⁻	35	46	36	(1)		
	-		•		-		

Question number	Answer		Additional guidance	Mark
20(b)(ii)	Relative abundance 40 30 20 10 0 157 158 159 160 161 16 m/z	2 163		2
	• lines at 158 and 160 and 162	(1)		
	• relative abundances 50:100:50	(1)	Allow relative abundances in any ratio 1:2:1, e.g. 25:50:25	

Question number	Answer	Additional guidance	Mark
20(b)(iii)		Example of calculation:	2
	• calculation of amount (mol) of Br ₂ (1)	Amount of Br ₂ = $\frac{2.00}{160}$ = 0.0125 (mol)	
	• calculation of molecules of Br ₂ (1)	Molecules of $Br_2 = 0.0125 \times 6.02 \times 10^{23}$ = 7.525 × 10 ²¹	
		or	
		Amount of $Br_2 = \frac{2.00}{(2 \times 79.9)} = 0.012516 \text{ (mol)}$	
		Molecules of $Br_2 = 0.012516 \times 6.02 \times 10^{23}$ = 7.5344 × 10 ²¹	
		TE on amount Br ₂	
		Correct answer with no working scores both marks	
		Ignore SF except 1 SF	

Question number	Answer	Additional guidance	Mark
20(c)		Example of calculation:	4
	• conversion of volume to m ³ (1)	Volume of bromine = $\frac{200}{1 \times 10^6}$ = 2.00 × 10 ⁻⁴ m ³	
	• conversion of temperature to K (1)	77+273 = 350	
	• rearrangement of expression (1)	$1.51 \times 10^5 \times 2.00 \times 10^{-4} = n \times 8.31 \times 350$ TE on volume bromine	
	• evaluation to give n (1)	$n = \frac{1.51 \times 10^5 \times 2.00 \times 10^{-4}}{8.31 \times 350}$	
		$n = 1.03834 \times 10^{-2}$	
		Ignore SF except 1SF	
		Correct answer with no working scores full marks	

Question number	Answer	Additional guidance	Mark
21(a)		Example of diagram:	1
	dot-and-cross diagram, including charges	Allow no electrons or 8 electrons on outer shell of Mg Allow any combination of dots or crosses for electrons Ignore missing square brackets	

Question	Answer	Additional guidance	Mark
number			
21(b)	An explanation that makes reference to the following points:		3
	• identification of charge carriers: magnesium - electrons and magnesium chloride - ions (1)		
	magnesium conducts electricity when solid because delocalised electrons can flow through		
	 magnesium chloride does not conduct when solid because the ions cannot move and it does conduct electricity when molten or dissolved in water as the ions can move. 		

Question number	Answer	Additional guidance	Mark
21(c)(i)	correct balanced ionic equation with state symbols	Examples of equation: $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	1

Question number	Answer	Additional guidance	Mark
21(c)(ii)		Example of calculation:	3
	• calculation of moles of MgO (1)	moles MgO = $\frac{2.45}{40.3}$ = 0.060794	
	calculation of moles of HCl (1)	moles HCl = 2 × 0.060794 = 0.121588	
	• calculation of volume of HCl (1)	volume HCl = $0.121588 \times \frac{1000}{2.00} = 60.794 \text{ cm}^3$	
		Ignore SF except 1 SF	
		Allow use of $A_r(Mg) = 24 (61.25 \text{ cm}^3)$	
		Correct answer with no working scores full marks	

Question number	Answer	Additional guidance	Mark
21(d)	Either	Example of calculation:	2
	• calculation of moles of MgCO ₃ (1)	moles $MgCO_3 = \underline{2.25} = 0.02669$ 84.3	
	• calculation of mass of MgCl ₂ (1)	mass $MgCl_2 = 0.02669 \times 95.3 = 2.5436 (g)$	
	or	or	
	• use of both molar masses (1)	84.3 g MgCO ₃ makes 95.3 g MgCl ₂	
	• calculation of mass of MgCl ₂ (1)	so 2.25 g MgCO ₃ makes $\frac{95.3}{84.3}$ × 2.25 = 2.5436 (g) MgCl ₂	
		Ignore SF except 1 SF	
		Allow use of $A_r(Mg) = 24 (2.5446 g)$	
		Correct answer with no working scores full marks	

Question number	Answer		Additional guidance	Mark
21(e)	An explanation that makes reference to the following points:		Ignore calculations	2
	(in the reaction with magnesium oxide) there are fewer waste products/no carbon dioxide is released/water is the only waste product	(1)	Allow reverse arguments	
	so the molar mass of all products is lower/the denominator of the equation for atom economy is lower	(1)		
	or			
	1 mol of magnesium compound produces 1 mol of magnesium chloride	(1)		
	• but the M_r of magnesium carbonate is greater than the M_r of magnesium oxide/carbon dioxide is an additional waste product from magnesium carbonate.	(1)		

Question number	Answer	Additional guidance	Mark
22(a)	H H H H H H H H H H H H H H H H H H H	Allow CH ₃ in branches	3
	• H H H H H H H H H H H H H H H H H H H	Allow 2 marks for 3 correct structural or skeletal formulae or any combination of these	
	• H—C—H H—C—H H—C—H H—C—H H—C—H		

Question number	Answer	Additional guidance	Mark
22(b)	• 2,4-dimethylhexane	Ignore punctuation errors	1

Question number	Answer	Additional guidance	Mark
22(c)	• molecular formula: C ₅ H ₁₂ (1)		2
	• boiling temperature 25 - 40 °C (1)	Allow any temperature or range within the given range	

Question number	Answer	Additional guidance	Mark
22(d)(i)	• $C_3H_8 + 3\frac{1}{2}O_2 \rightarrow C + CO + CO_2 + 4H_2O$	Allow multiples Ignore state symbols, even if incorrect	1

Question	Answer	Additional guidance	Mark
number			
22(d)(ii)	An explanation that makes reference to the following points:		2
	• (carbon monoxide) reacts with haemoglobin (in the blood) (1)	Allow forms carboxyhaemoglobin	
	• preventing it from carrying oxygen (around the body). (1)		

Question number	Answer	Additional guidance	Mark
22(e)(i)	$\bullet C_3H_8 + Cl \bullet \to C_3H_7 \bullet + HCl \tag{1}$	Allow equations in either order	2
	• C_3H_7 • + $Cl_2 \rightarrow C_3H_7Cl$ + Cl • (1)	Penalise missing • once only	

Question number	Answer	Additional guidance	Mark
22(e)(ii)	the products are 1-chloropropane and 2-chloropropane	Allow any unambiguous formulae Ignore molecular formulae	1

Question number	Answer	Additional guidance	Mark
22(e)(iii)	the chlorine free radical can remove a hydrogen from either the end carbon atoms or the central carbon atom		1

Question number	Answer	Additional guidance	Mark
22(e)(iv)	two propyl (free) radicals react together or	Ignore just '(two free) radicals react together'	1
	• C_3H_7 • + C_3H_7 • $\rightarrow C_6H_{14}$	Do not allow molecules/ions	

Question number	Answer	Additional guidance	Mark
22(e)(v)		Examples of structures and names:	2
	• structure (1) • corresponding name (1)	CH ₃ CH ₂ CHCl ₂ 1,1-dichloropropane CH ₃ CHClCH ₂ Cl 1,2-dichloropropane CH ₃ CCl ₂ CH ₃ 2,2-dichloropropane CH ₂ ClCH ₂ CH ₂ Cl 1,3-dichloropropane	
		Allow displayed, structural or skeletal formulae or any combination of these	

Question number	Answer	Additional guidance	Mark
23(a)(i)	• (reagent W) hydrogen/H ₂ (1)		2
	• (catalyst X) nickel (1)	Allow nickel, Ni/platinum, Pt/palladium, Pd	

Question number	Answer	Additional guidance	Mark
23(a)(ii)	•	Allow OH	1
	H H H	Do not allow C-H-O	

Question number	Answer	Additional guidance	Mark
23(a)(iii)	• CI		1

Question number	Answer	Additional guidance	Mark
23(b)(i)	• correct dipole $(O^{\delta^-} - H^{\delta^+})$ (1) • curly arrow from C=C to H in H_2O (1) • curly arrow from O-H bond to O (1) • curly arrow from lone pair on O of OH ⁻ to C ⁺ (1)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4

Question number	Answer	Additional guidance	Mark
23(b)(ii)	• trigonal planar (1)	Allow M1 and M2 shown on a diagram	3
		Allow bond pairs/electron pairs as far apart as possible	
	• bond pairs/electron pairs arranged to minimise repulsion (1)	apart as possible	

23(c) • 4 carbon backbone with continuation bonds • all side chains correct (1) • A carbon backbone with continuation bonds • all side chains correct (1) • COOCH ₃ COOCH ₃ • Allow CO ₂ CH ₃ in side chains Allow CH ₃ and COOCH ₃ groups above or below the carbon chain	Question number	Answer	Additional guidance	Mark
all side chains correct (1) H H H H C C C H C C H			Example of polymer:	2
COOCH ₃ CH ₃ CH ₃ Allow CO ₂ CH ₃ in side chains Allow CH ₃ and COOCH ₃ groups above or below the carbon chain			H	
Allow CH ₃ and COOCH ₃ groups above or below the carbon chain			COOCH ₃ COOCH ₃ H H H	
Any structure with C=C scores 0			Allow CH ₃ and COOCH ₃ groups above or below the carbon chain Ignore square brackets and n	